- Q.1. (a) Explain with the help of suitable examples:
 - i) Sample Space
 - ii) Event
 - iii) Mutually Exclusive events
 - iv) Complementary events
 - v) Probability of an event.
 - (b) A coin is tossed thrice. Describe the sample space for the experiment. Also write the subsets of the sample space corresponding to the events-

A₁: the last toss gives a head

A2: heads and tails are alternate

 A_3 : the number of heads is less than number of tails

 A_4 : one more head occurs than the number of tails.

- (c) Two cards are drawn from a normal pack of 52 well-shuffled cards. Find the probability that the cards drawn are
 - i) both black
 - ii) one black and one heart
 - iii) both aces
 - iv) one ace and one king
 - v) both face cards
- (d) A problem is given to three students A, B and C whose chances of solving it 10 are 1/2, 1/3 and 1/4 respectively. If all of them try it independently, find the probability that the problem will be solved.
- Q.2. (a) Define Expectation E(X) and Variance V(X) of a discrete random variable
 X. Show that
 - i) E(aX + b) = a E(X) + b
 - ii) $V(aX + b) = a^2 V(X)$, where a and b are constants.
 - (b) The probability mass function of a random variate X is given by

$$P(x) = 1/6$$
 when x=0
= 2/3 when x=1
=1/6 when x=2

=0 otherwise

Find- (i) p(x=0)

(ii) p(x=1)

(iii) p(x is even)

(iv) p(x is multiple of 5) (v) p(x > 0)

(c) Following is joint probability distribution of X and Y.

3 2 4 x y0 0.02 0.08 0.10 1 0.03 0.12 0.15 2 0.05 0.20 0.25

Examine whether X and Y are stochastically independent.

10

10

	(d)	Calculate first three raw moments about origin and first three central moments for the following random variable X whose probability distribution function $P(x)$ is given by- $x : 0 1 2$ $P(x) : \frac{1}{4} \frac{1}{2} \frac{1}{4}$	10
Q.3.	(a)	If X is a Binomial variate with parameters n and p, write its probability mass function $P(X = x)$. Find $E(X)$. State variance of X.	10
	(b)	A has won 20 out of 30 games of chess with B. In a new series of 6 games, what is the probability that A would win - (i) four or more games (ii) only four games?	10
	(c)	On an average three divorce cases are filed in a court of a small city. Find the chance that on a certain day the number of such cases coming up would be — (i) one (ii) at least two (iii) at most two.	10
	(d)	Given- e^{-3} =0.05. A digit is drawn at random from among the digits 1,2,3,4,5,6,7,8,9 and 0. If X denotes the digit drawn find p(x), E(X) and V(X).	10
Q.4.	(a)	A large box contains 30 colored balls of which 15 are red, 10 are white and the rest are black. One ball is drawn at random. Find the probability of drawing	5
		(i) a red ball (ii) a white ball (iii) a black ball (iv) a white or black ball.	
	(b)	A random variable X takes values -1, 0, 1 with probabilities 1/4, 1/2 and 1/4 respectively. Find the probability distribution function of random variables –	5
	(c)	(i) $Y = 2X - 1$ (ii) $Z = X^2$. It is observed that 30% of the students in a class are swimmers. If 3 students are selected at random from this class, what is the chance that only one of	5
	(d)	them is a swimmer? A variate X follows Poisson distribution with parameter 5. Evaluate (i) p($x = 0$) (ii) p($x = 1$) (iii) p($x \ge 1$) (iv) p($x \ne 0$). Given that $e^{-5} = 0.00674$.	5
